Legendre rational functions

In mathematics the Legendre rational functions are a sequence of functions which are both rational and orthogonal. A rational Legendre function of degree n is defined as:

R_n(x) = \frac{\sqrt{2}}{x%2B1}\,L_n\left(\frac{x-1}{x%2B1}\right)

where L_n(x) is a Legendre polynomial. These functions are eigenfunctions of the singular Sturm-Liouville problem:

(x%2B1)\partial_x(x\partial_x((x%2B1)v(x)))%2B\lambda v(x)=0

with eigenvalues

\lambda_n=n(n%2B1)\,

Contents

Properties

Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves.

Recursion

R_{n%2B1}(x)=\frac{2n%2B1}{n%2B1}\,\frac{x-1}{x%2B1}\,R_n(x)-\frac{n}{n%2B1}\,R_{n-1}(x)\quad\mathrm{for\,n\ge 1}

and

2(2n%2B1)R_n(x)=(x%2B1)^2(\partial_x R_{n%2B1}(x)-\partial_x R_{n-1}(x))%2B(x%2B1)(R_{n%2B1}(x)-R_{n-1}(x))

Limiting behavior

It can be shown that

\lim_{x\rightarrow \infty}(x%2B1)R_n(x)=\sqrt{2}

and

\lim_{x\rightarrow \infty}x\partial_x((x%2B1)R_n(x))=0

Orthogonality

\int_{0}^\infty R_m(x)\,R_n(x)\,dx=\frac{2}{2n%2B1}\delta_{nm}

where \delta_{nm} is the Kronecker delta function.

Particular values

R_0(x)=1\,
R_1(x)=\frac{x-1}{x%2B1}\,
R_2(x)=\frac{x^2-4x%2B1}{(x%2B1)^2}\,
R_3(x)=\frac{x^3-9x^2%2B9x-1}{(x%2B1)^3}\,
R_4(x)=\frac{x^4-16x^3%2B36x^2-16x%2B1}{(x%2B1)^4}\,

References

Zhong-Qing, Wang; Ben-Yu, Guo (2005). "A mixed spectral method for incompressible viscous fluid flow in an infinite strip" (PDF). Mat. apl. comput. 24 (3). doi:10.1590/S0101-82052005000300002. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-82052005000300002&lng=en&nrm=iso. Retrieved 2006-08-08.